terimakasihh:)
Jawaban:
Penjelasan dengan langkah-langkah:
kurva
→ y = 3x + 2
- batas bawah = 2
- batas atas = 5
dijawab:
[tex]\sf = \pi\int \limits_{2}^{5}(3x + 2) ^{2} dx \\ [/tex]
[tex]\sf = \pi\int \limits_{2}^{5}(9 {x}^{2} + 12x + 4)dx \\ [/tex]
[tex]\sf = \pi \frac{9}{2 + 1} {x}^{2 + 1} + \frac{12}{1 + 1} {x}^{1 + 1} + 4x \\ [/tex]
[tex]\sf = \pi \frac{9}{3} {x}^{3} + \frac{12}{2} {x}^{2} + 4x \\ [/tex]
[tex]\sf = \pi3 {x}^{3} + 6 {x}^{2} + 4x[/tex]
[tex]\sf = \pi3 {x}^{3} + 6 {x}^{2} + 4x\int \limits_{2}^{5} \\ [/tex]
[tex]\sf = \pi3(5) ^{3} + 6(5) ^{2} + 4(5) - (3(2) ^{3} + 6(2)^{2} + 4(2) \\ [/tex]
[tex]\sf \pi = 3(125) + 6(25) + 20 - (3(8) + 6(4) + 8 \\ [/tex]
[tex]\sf = \pi375 + 150 + 20 - (24 + 24 + 8) \\ [/tex]
[tex]\sf = \pi545 - 56[/tex]
[tex]\sf = 489 π\: satuan \: volume[/tex]
_______________________________
» Detail Jawaban
- Mapel : Matematika
- Kelas : Xll
- Materi : Aplikasi integral
- Bab : -
- Kode Soal : 2